Evidence for mitoxantrone-induced block of inwardly rectifying K(+) channels expressed in the osteoclast precursor RAW 264.7 cells differentiated with lipopolysaccharide.
نویسندگان
چکیده
BACKGROUND/AIMS Mitoxanthrone (MX) is an anthracenedione antineoplastic agent. Whether this drug and other related compounds have any effects on ion currents in osteoclasts remains largely unclear. METHODS In this study, the effects of MX and other related compounds on inwardly rectifying K(+) current (I(K(IR))) were investigated in RAW 264.7 osteoclast precursor cells treated with lipopolysaccharide. RESULTS The I(K(IR))in these cells are blocked by BaCl(2) (1 mM). MX (1-100 µM) decreased the amplitude of I(K(IR)) in a concentration-dependent manner with an IC(50) value of 6.4 µM. MX also slowed the time course of I(K(IR)) inactivation elicited by large hyperpolarization. Doxorubicin (10 µM), 17β-estradiol (10 µM) and tertiapin (1 µM) decreased the I(K(IR)) amplitude in these cells. In bafilomycin A(1)-treated cells, MX-mediated block of I(K(IR)) still existed. In cell-attached configuration, when the electrode was filled with MX (10 µM), the activity of inwardly rectifying K(+) (Kir) channels was decreased with no change in single-channel conductance. MX-mediated reduction of channel activity is accompanied by a shortening of mean open time. Under current-clamp conditions, addition of MX resulted in membrane depolarization. Therefore, MX can interact with the Kir channels to decrease the I(K(IR)) amplitude and to depolarize the membrane in these cells. CONCLUSION The block by this drug of Kir2.1 channels appears to be one of the important mechanisms underlying its actions on the resorptive activity of osteoclasts, if similar results occur in vivo. Targeting at Kir channels may be clinically useful as an adjunctive regimen to anti-cancer drugs (e.g., MX or doxorubicin) in influencing the resorptive activity of osteoclasts.
منابع مشابه
Activation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملActivation of inwardly-rectifying k+ channels in hypothalamic POMC neurons: role in integrating synaptic and metabolic input
Hypothalamic proopiomelanocortin (POMC) neurons are critical for controlling homeostatic functions in mammals. We used a transgenic mouse model in which the POMC neurons were labeled with enhanced-green fluorescent protein (EGFP) to perform visualized, whole-cell patch recordings from pre-pubertal female hypothalamic slices. The mouse POMC-EGFP neurons expressed the same endogenous conductance ...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملAminothiazoles inhibit RANKL‐ and LPS‐mediated osteoclastogenesis and PGE 2 production in RAW 264.7 cells
Periodontitis is characterized by chronic inflammation and osteoclast-mediated bone loss regulated by the receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase-1 (mPGES-1) on RANKL- and lipopolysaccharide (LPS)-mediated osteoclastogenesis and prostagl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2012